138 research outputs found

    The Vestibular Component in Out-Of-Body Experiences: A Computational Approach

    Get PDF
    Neurological evidence suggests that disturbed vestibular processing may play a key role in triggering out-of-body experiences (OBEs). Little is known about the brain mechanisms during such pathological conditions, despite recent experimental evidence that the scientific study of such experiences may facilitate the development of neurobiological models of a crucial aspect of self-consciousness: embodied self-location. Here we apply Bayesian modeling to vestibular processing and show that OBEs and the reported illusory changes of self-location and translation can be explained as the result of a mislead Bayesian inference, in the sense that ambiguous bottom-up signals from the vestibular otholiths in the supine body position are integrated with a top-down prior for the upright body position, which we measure during natural head movements. Our findings have relevance for self-location and translation under normal conditions and suggest novel ways to induce and study experimentally both aspects of bodily self-consciousness in healthy subjects

    Impulse for animal welfare outside the experiment

    Get PDF
    Animal welfare is a growing societal concern and the well-being of animals used for experimental purposes is under particular scrutiny. The vast majority of laboratory animals are mice living in small cages that do not offer very much variety. Moreover, the experimental procedure often takes very little time compared to the time these animals have been bred to the desired age or are being held available for animal experimentation. However, for the assessment of animal welfare, the time spent waiting for an experiment or the time spent after finishing an experiment has also to be taken into account. In addition to experimental animals, many additional animals (e.g. for breeding and maintenance of genetic lines, surplus animals) are related to animal experimentation and usually face similar living conditions. Therefore, in terms of improving the overall welfare of laboratory animals, there is not only a need for refinement of experimental conditions but especially for improving living conditions outside the experiment. The improvement of animal welfare thus depends to a large extent on the housing and maintenance conditions of all animals related to experimentation. Given the current state of animal welfare research there is indeed a great potential for improving the overall welfare of laboratory animals

    Neuronal Synchronization Can Control the Energy Efficiency of Inter-Spike Interval Coding

    Get PDF
    The role of synchronous firing in sensory coding and cognition remains controversial. While studies, focusing on its mechanistic consequences in attentional tasks, suggest that synchronization dynamically boosts sensory processing, others failed to find significant synchronization levels in such tasks. We attempt to understand both lines of evidence within a coherent theoretical framework. We conceptualize synchronization as an independent control parameter to study how the postsynaptic neuron transmits the average firing activity of a presynaptic population, in the presence of synchronization. We apply the Berger-Levy theory of energy efficient information transmission to interpret simulations of a Hodgkin-Huxley-type postsynaptic neuron model, where we varied the firing rate and synchronization level in the presynaptic population independently. We find that for a fixed presynaptic firing rate the simulated postsynaptic interspike interval distribution depends on the synchronization level and is well-described by a generalized extreme value distribution. For synchronization levels of 15% to 50%, we find that the optimal distribution of presynaptic firing rate, maximizing the mutual information per unit cost, is maximized at ~30% synchronization level. These results suggest that the statistics and energy efficiency of neuronal communication channels, through which the input rate is communicated, can be dynamically adapted by the synchronization level.Comment: 47 pages, 14 figures, 2 Table

    Towards Model-Based Brain Imaging with Multi-Scale Modeling

    Get PDF

    Suppression of high-P T jets as a signal for large extra dimensions and new estimates of lifetimes for meta stable micro black holes : from the early universe to future colliders

    Get PDF
    We address the production of black holes at LHC in space times with compactified space-like large extra dimensions (LXD). Final state black hole production leads to suppression of high-PT jets, i.e. a sharp cut-o in (pp!jet+X). This signal is compared to the jet plus missing energy signature due to graviton production in the final state as proposed by the ATLAS collaboration. Time evolution and lifetimes of the newly created black holes are calculated based on the micro- canonical formalism. It is demonstrated that previous lifetime estimates of micro black holes have been dramatically underestimated. The creation of a large number of quasi-stable black holes is predicted with life times of hundred fm/c at LHC. Medium modifications of the black holes evaporation rate due to the quark gluon plasma in relativistic heavy ion collisions as well as provided by the cosmic fluid in the early universe are studie

    Synchrony in Neuronal Communications: An Energy Efficient Scheme

    Full text link
    We are interested in understanding the neural correlates of attentional processes using first principles. Here we apply a recently developed first principles approach that uses transmitted information in bits per joule to quantify the energy efficiency of information transmission for an inter-spike-interval (ISI) code that can be modulated by means of the synchrony in the presynaptic population. We simulate a single compartment conductance-based model neuron driven by excitatory and inhibitory spikes from a presynaptic population, where the rate and synchrony in the presynaptic excitatory population may vary independently from the average rate. We find that for a fixed input rate, the ISI distribution of the post synaptic neuron depends on the level of synchrony and is well-described by a Gamma distribution for synchrony levels less than 50%. For levels of synchrony between 15% and 50% (restricted for technical reasons), we compute the optimum input distribution that maximizes the mutual information per unit energy. This optimum distribution shows that an increased level of synchrony, as it has been reported experimentally in attention-demanding conditions, reduces the mode of the input distribution and the excitability threshold of post synaptic neuron. This facilitates a more energy efficient neuronal communication.Comment: 6 pages, 5 figures, Accepted for publication to IWCIT 201

    Creating, Reinterpreting, Combining, Cuing: Paper Practices on the Shopfloor

    Get PDF
    Despite the advent of a flurry of digital technologies, paper prevails on manufacturing shopfloors. To understand the roles and value of paper on the shopfloor, we have studied the manufacturing practices at two state-of-the-art automotive supplier facilities, applying ethnographic fieldwork, in-depth interviews, as well as photo and document analysis. We find that paper has unique affordances that today’s digital technologies cannot easily supplant on current shopfloors. More specifically, we find four paper practices: (1) creating and adapting individual information spaces, (2) reinterpreting information, (3) combining information handover with social interaction, and (4) visual cuing. We discuss these practices and the unique affordance of paper that currently support shopfloor workers and also consider the limitations of paper, which are becoming increasingly apparent, since more tasks increasingly depend on real-time information
    corecore